{ config, lib, pkgs, ... }: with lib; let routerCfg = config.services.qois.router; cfg = config.services.qois.router.dhcp; in { options.services.qois.router.dhcp = { enable = mkEnableOption "router dhcp service"; localDomain = mkOption { type = types.str; example = "example.com"; description = '' DNS-Domain of local network ''; }; dhcpRange = mkOption { type = types.str; example = "192.168.0.2,192.168.0.128"; description = '' Range of IP-adresses to distribute via dhcp in dnsmasq format. ''; }; localDnsPort = mkOption { type = types.addCheck types.int (n: n >= 0 && n <= 65535); example = "router"; default = 5553; description = '' Port to expose dns to. Note that, if you use the recursiveDns role, the recursive DNS server should use the default DNS port (53). ''; }; }; config = mkIf cfg.enable { services.dnsmasq.enable = true; services.dnsmasq.extraConfig = '' # Listen on this specific port instead of the standard DNS port # (53). Setting this to zero completely disables DNS function, # leaving only DHCP and/or TFTP. port=${toString cfg.localDnsPort} # The following two options make you a better netizen, since they # tell dnsmasq to filter out queries which the public DNS cannot # answer, and which load the servers (especially the root servers) # unnecessarily. If you have a dial-on-demand link they also stop # these requests from bringing up the link unnecessarily. # Never forward plain names (without a dot or domain part) domain-needed # Never forward addresses in the non-routed address spaces. bogus-priv # Uncomment this to filter useless windows-originated DNS requests # which can trigger dial-on-demand links needlessly. # Note that (amongst other things) this blocks all SRV requests, # so don't use it if you use eg Kerberos, SIP, XMMP or Google-talk. # This option only affects forwarding, SRV records originating for # dnsmasq (via srv-host= lines) are not suppressed by it. #filterwin2k # Change this line if you want dns to get its upstream servers from # somewhere other that /etc/resolv.conf #resolv-file= # By default, dnsmasq will send queries to any of the upstream # servers it knows about and tries to favour servers to are known # to be up. Uncommenting this forces dnsmasq to try each query # with each server strictly in the order they appear in # /etc/resolv.conf #strict-order # If you don't want dnsmasq to read /etc/resolv.conf or any other # file, getting its servers from this file instead (see below), then # uncomment this. #no-resolv # If you don't want dnsmasq to poll /etc/resolv.conf or other resolv # files for changes and re-read them then uncomment this. no-poll # Add other name servers here, with domain specs if they are for # non-public domains. #server=/localnet/192.168.0.1 # Example of routing PTR queries to nameservers: this will send all # address->name queries for 192.168.3/24 to nameserver 10.1.2.3 #server=/3.168.192.in-addr.arpa/10.1.2.3 # Add local-only domains here, queries in these domains are answered # from /etc/hosts or DHCP only. local=/${config.networking.hostName}/ # Add domains which you want to force to an IP address here. # The example below send any host in double-click.net to a local # web-server. #address=/double-click.net/127.0.0.1 address=/${config.networking.hostName}.${cfg.localDomain}/${routerCfg.internalRouterIP} # --address (and --server) work with IPv6 addresses too. #address=/www.thekelleys.org.uk/fe80::20d:60ff:fe36:f83 # You can control how dnsmasq talks to a server: this forces # queries to 10.1.2.3 to be routed via eth1 # server=10.1.2.3@eth1 # and this sets the source (ie local) address used to talk to # 10.1.2.3 to 192.168.1.1 port 55 (there must be a interface with that # IP on the machine, obviously). # server=10.1.2.3@192.168.1.1#55 # If you want dnsmasq to change uid and gid to something other # than the default, edit the following lines. #user= #group= # If you want dnsmasq to listen for DHCP and DNS requests only on # specified interfaces (and the loopback) give the name of the # interface (eg eth0) here. # Repeat the line for more than one interface. interface=${routerCfg.internalBridgeInterfaceName} interface=lo # Or you can specify which interface _not_ to listen on #except-interface= # Or which to listen on by address (remember to include 127.0.0.1 if # you use this.) #listen-address= # If you want dnsmasq to provide only DNS service on an interface, # configure it as shown above, and then use the following line to # disable DHCP and TFTP on it. no-dhcp-interface=lo # On systems which support it, dnsmasq binds the wildcard address, # even when it is listening on only some interfaces. It then discards # requests that it shouldn't reply to. This has the advantage of # working even when interfaces come and go and change address. If you # want dnsmasq to really bind only the interfaces it is listening on, # uncomment this option. About the only time you may need this is when # running another nameserver on the same machine. bind-interfaces # If you don't want dnsmasq to read /etc/hosts, uncomment the # following line. no-hosts # or if you want it to read another file, as well as /etc/hosts, use # this. #addn-hosts=/etc/banner_add_hosts # Set this (and domain: see below) if you want to have a domain # automatically added to simple names in a hosts-file. expand-hosts # Set the domain for dnsmasq. this is optional, but if it is set, it # does the following things. # 1) Allows DHCP hosts to have fully qualified domain names, as long # as the domain part matches this setting. # 2) Sets the "domain" DHCP option thereby potentially setting the # domain of all systems configured by DHCP # 3) Provides the domain part for "expand-hosts" domain=${cfg.localDomain} # Set a different domain for a particular subnet #domain=wireless.thekelleys.org.uk,192.168.2.0/24 # Same idea, but range rather then subnet #domain=reserved.thekelleys.org.uk,192.68.3.100,192.168.3.200 # Uncomment this to enable the integrated DHCP server, you need # to supply the range of addresses available for lease and optionally # a lease time. If you have more than one network, you will need to # repeat this for each network on which you want to supply DHCP # service. dhcp-range=${cfg.dhcpRange},48h # This is an example of a DHCP range where the netmask is given. This # is needed for networks we reach the dnsmasq DHCP server via a relay # agent. If you don't know what a DHCP relay agent is, you probably # don't need to worry about this. #dhcp-range=192.168.0.50,192.168.0.150,255.255.255.0,12h # This is an example of a DHCP range which sets a tag, so that # some DHCP options may be set only for this network. #dhcp-range=set:red,192.168.0.50,192.168.0.150 # Use this DHCP range only when the tag "green" is set. #dhcp-range=tag:green,192.168.0.50,192.168.0.150,12h # Specify a subnet which can't be used for dynamic address allocation, # is available for hosts with matching --dhcp-host lines. Note that # dhcp-host declarations will be ignored unless there is a dhcp-range # of some type for the subnet in question. # In this case the netmask is implied (it comes from the network # configuration on the machine running dnsmasq) it is possible to give # an explicit netmask instead. #dhcp-range=192.168.0.0,static # Enable DHCPv6. Note that the prefix-length does not need to be specified # and defaults to 64 if missing/ #dhcp-range=1234::2, 1234::500, 64, 12h # Do Router Advertisements, BUT NOT DHCP for this subnet. #dhcp-range=1234::, ra-only # Do Router Advertisements, BUT NOT DHCP for this subnet, also try and # add names to the DNS for the IPv6 address of SLAAC-configured dual-stack # hosts. Use the DHCPv4 lease to derive the name, network segment and # MAC address and assume that the host will also have an # IPv6 address calculated using the SLAAC alogrithm. #dhcp-range=1234::, ra-names # Do Router Advertisements, BUT NOT DHCP for this subnet. # Set the lifetime to 46 hours. (Note: minimum lifetime is 2 hours.) #dhcp-range=1234::, ra-only, 48h # Do DHCP and Router Advertisements for this subnet. Set the A bit in the RA # so that clients can use SLAAC addresses as well as DHCP ones. #dhcp-range=1234::2, 1234::500, slaac # Do Router Advertisements and stateless DHCP for this subnet. Clients will # not get addresses from DHCP, but they will get other configuration information. # They will use SLAAC for addresses. #dhcp-range=1234::, ra-stateless # Do stateless DHCP, SLAAC, and generate DNS names for SLAAC addresses # from DHCPv4 leases. #dhcp-range=1234::, ra-stateless, ra-names # Do router advertisements for all subnets where we're doing DHCPv6 # Unless overriden by ra-stateless, ra-names, et al, the router # advertisements will have the M and O bits set, so that the clients # get addresses and configuration from DHCPv6, and the A bit reset, so the # clients don't use SLAAC addresses. #enable-ra # Supply parameters for specified hosts using DHCP. There are lots # of valid alternatives, so we will give examples of each. Note that # IP addresses DO NOT have to be in the range given above, they just # need to be on the same network. The order of the parameters in these # do not matter, it's permissible to give name, address and MAC in any # order. # Always allocate the host with Ethernet address 11:22:33:44:55:66 # The IP address 192.168.0.60 #dhcp-host=11:22:33:44:55:66,192.168.0.60 # Always set the name of the host with hardware address # 11:22:33:44:55:66 to be "fred" #dhcp-host=11:22:33:44:55:66,fred # Always give the host with Ethernet address 11:22:33:44:55:66 # the name fred and IP address 192.168.0.60 and lease time 45 minutes #dhcp-host=11:22:33:44:55:66,fred,192.168.0.60,45m # Give a host with Ethernet address 11:22:33:44:55:66 or # 12:34:56:78:90:12 the IP address 192.168.0.60. Dnsmasq will assume # that these two Ethernet interfaces will never be in use at the same # time, and give the IP address to the second, even if it is already # in use by the first. Useful for laptops with wired and wireless # addresses. #dhcp-host=11:22:33:44:55:66,12:34:56:78:90:12,192.168.0.60 # Give the machine which says its name is "bert" IP address # 192.168.0.70 and an infinite lease #dhcp-host=bert,192.168.0.70,infinite # Always give the host with client identifier 01:02:02:04 # the IP address 192.168.0.60 #dhcp-host=id:01:02:02:04,192.168.0.60 # Always give the host with client identifier "marjorie" # the IP address 192.168.0.60 #dhcp-host=id:marjorie,192.168.0.60 # Enable the address given for "judge" in /etc/hosts # to be given to a machine presenting the name "judge" when # it asks for a DHCP lease. #dhcp-host=judge # Never offer DHCP service to a machine whose Ethernet # address is 11:22:33:44:55:66 #dhcp-host=11:22:33:44:55:66,ignore # Ignore any client-id presented by the machine with Ethernet # address 11:22:33:44:55:66. This is useful to prevent a machine # being treated differently when running under different OS's or # between PXE boot and OS boot. #dhcp-host=11:22:33:44:55:66,id:* # Send extra options which are tagged as "red" to # the machine with Ethernet address 11:22:33:44:55:66 #dhcp-host=11:22:33:44:55:66,set:red # Send extra options which are tagged as "red" to # any machine with Ethernet address starting 11:22:33: #dhcp-host=11:22:33:*:*:*,set:red # Give a fixed IPv6 address and name to client with # DUID 00:01:00:01:16:d2:83:fc:92:d4:19:e2:d8:b2 # Note the MAC addresses CANNOT be used to identify DHCPv6 clients. # Note also the they [] around the IPv6 address are obilgatory. #dhcp-host=id:00:01:00:01:16:d2:83:fc:92:d4:19:e2:d8:b2, fred, [1234::5] # Ignore any clients which are not specified in dhcp-host lines # or /etc/ethers. Equivalent to ISC "deny unknown-clients". # This relies on the special "known" tag which is set when # a host is matched. #dhcp-ignore=tag:!known # Send extra options which are tagged as "red" to any machine whose # DHCP vendorclass string includes the substring "Linux" #dhcp-vendorclass=set:red,Linux # Send extra options which are tagged as "red" to any machine one # of whose DHCP userclass strings includes the substring "accounts" #dhcp-userclass=set:red,accounts # Send extra options which are tagged as "red" to any machine whose # MAC address matches the pattern. #dhcp-mac=set:red,00:60:8C:*:*:* # If this line is uncommented, dnsmasq will read /etc/ethers and act # on the ethernet-address/IP pairs found there just as if they had # been given as --dhcp-host options. Useful if you keep # MAC-address/host mappings there for other purposes. #read-ethers # Send options to hosts which ask for a DHCP lease. # See RFC 2132 for details of available options. # Common options can be given to dnsmasq by name: # run "dnsmasq --help dhcp" to get a list. # Note that all the common settings, such as netmask and # broadcast address, DNS server and default route, are given # sane defaults by dnsmasq. You very likely will not need # any dhcp-options. If you use Windows clients and Samba, there # are some options which are recommended, they are detailed at the # end of this section. # Override the default route supplied by dnsmasq, which assumes the # router is the same machine as the one running dnsmasq. #dhcp-option=3,1.2.3.4 dhcp-option=6,${routerCfg.internalRouterIP} # Do the same thing, but using the option name #dhcp-option=option:router,1.2.3.4 # Override the default route supplied by dnsmasq and send no default # route at all. Note that this only works for the options sent by # default (1, 3, 6, 12, 28) the same line will send a zero-length option # for all other option numbers. #dhcp-option=3 # Set the NTP time server addresses to 192.168.0.4 and 10.10.0.5 #dhcp-option=option:ntp-server,192.168.0.4,10.10.0.5 # Send DHCPv6 option. Note [] around IPv6 addresses. #dhcp-option=option6:dns-server,[1234::77],[1234::88] # Send DHCPv6 option for namservers as the machine running # dnsmasq and another. #dhcp-option=option6:dns-server,[::],[1234::88] # Set the NTP time server address to be the same machine as # is running dnsmasq #dhcp-option=42,0.0.0.0 # Set the NIS domain name to "welly" #dhcp-option=40,welly # Set the default time-to-live to 50 #dhcp-option=23,50 # Set the "all subnets are local" flag #dhcp-option=27,1 # Send the etherboot magic flag and then etherboot options (a string). #dhcp-option=128,e4:45:74:68:00:00 #dhcp-option=129,NIC=eepro100 # Specify an option which will only be sent to the "red" network # (see dhcp-range for the declaration of the "red" network) # Note that the tag: part must precede the option: part. #dhcp-option = tag:red, option:ntp-server, 192.168.1.1 # The following DHCP options set up dnsmasq in the same way as is specified # for the ISC dhcpcd in # http://www.samba.org/samba/ftp/docs/textdocs/DHCP-Server-Configuration.txt # adapted for a typical dnsmasq installation where the host running # dnsmasq is also the host running samba. # you may want to uncomment some or all of them if you use # Windows clients and Samba. #dhcp-option=19,0 # option ip-forwarding off #dhcp-option=44,0.0.0.0 # set netbios-over-TCP/IP nameserver(s) aka WINS server(s) #dhcp-option=45,0.0.0.0 # netbios datagram distribution server #dhcp-option=46,8 # netbios node type # Send an empty WPAD option. This may be REQUIRED to get windows 7 to behave. #dhcp-option=252,"\n" # Send RFC-3397 DNS domain search DHCP option. WARNING: Your DHCP client # probably doesn't support this...... dhcp-option=option:domain-search,${cfg.localDomain} # Send RFC-3442 classless static routes (note the netmask encoding) #dhcp-option=121,192.168.1.0/24,1.2.3.4,10.0.0.0/8,5.6.7.8 # Send vendor-class specific options encapsulated in DHCP option 43. # The meaning of the options is defined by the vendor-class so # options are sent only when the client supplied vendor class # matches the class given here. (A substring match is OK, so "MSFT" # matches "MSFT" and "MSFT 5.0"). This example sets the # mtftp address to 0.0.0.0 for PXEClients. #dhcp-option=vendor:PXEClient,1,0.0.0.0 # Send microsoft-specific option to tell windows to release the DHCP lease # when it shuts down. Note the "i" flag, to tell dnsmasq to send the # value as a four-byte integer - that's what microsoft wants. See # http://technet2.microsoft.com/WindowsServer/en/library/a70f1bb7-d2d4-49f0-96d6-4b7414ecfaae1033.mspx?mfr=true #dhcp-option=vendor:MSFT,2,1i # Send the Encapsulated-vendor-class ID needed by some configurations of # Etherboot to allow is to recognise the DHCP server. #dhcp-option=vendor:Etherboot,60,"Etherboot" # Send options to PXELinux. Note that we need to send the options even # though they don't appear in the parameter request list, so we need # to use dhcp-option-force here. # See http://syslinux.zytor.com/pxe.php#special for details. # Magic number - needed before anything else is recognised #dhcp-option-force=208,f1:00:74:7e # Configuration file name #dhcp-option-force=209,configs/common # Path prefix #dhcp-option-force=210,/tftpboot/pxelinux/files/ # Reboot time. (Note 'i' to send 32-bit value) #dhcp-option-force=211,30i # Set the boot filename for netboot/PXE. You will only need # this is you want to boot machines over the network and you will need # a TFTP server; either dnsmasq's built in TFTP server or an # external one. (See below for how to enable the TFTP server.) #dhcp-boot=pxelinux.0 # The same as above, but use custom tftp-server instead machine running dnsmasq #dhcp-boot=pxelinux,server.name,192.168.1.100 # Boot for Etherboot gPXE. The idea is to send two different # filenames, the first loads gPXE, and the second tells gPXE what to # load. The dhcp-match sets the gpxe tag for requests from gPXE. #dhcp-match=set:gpxe,175 # gPXE sends a 175 option. #dhcp-boot=tag:!gpxe,undionly.kpxe #dhcp-boot=mybootimage # Encapsulated options for Etherboot gPXE. All the options are # encapsulated within option 175 #dhcp-option=encap:175, 1, 5b # priority code #dhcp-option=encap:175, 176, 1b # no-proxydhcp #dhcp-option=encap:175, 177, string # bus-id #dhcp-option=encap:175, 189, 1b # BIOS drive code #dhcp-option=encap:175, 190, user # iSCSI username #dhcp-option=encap:175, 191, pass # iSCSI password # Test for the architecture of a netboot client. PXE clients are # supposed to send their architecture as option 93. (See RFC 4578) #dhcp-match=peecees, option:client-arch, 0 #x86-32 #dhcp-match=itanics, option:client-arch, 2 #IA64 #dhcp-match=hammers, option:client-arch, 6 #x86-64 #dhcp-match=mactels, option:client-arch, 7 #EFI x86-64 # Do real PXE, rather than just booting a single file, this is an # alternative to dhcp-boot. #pxe-prompt="What system shall I netboot?" # or with timeout before first available action is taken: #pxe-prompt="Press F8 for menu.", 60 # Available boot services. for PXE. #pxe-service=x86PC, "Boot from local disk" # Loads /pxelinux.0 from dnsmasq TFTP server. #pxe-service=x86PC, "Install Linux", pxelinux # Loads /pxelinux.0 from TFTP server at 1.2.3.4. # Beware this fails on old PXE ROMS. #pxe-service=x86PC, "Install Linux", pxelinux, 1.2.3.4 # Use bootserver on network, found my multicast or broadcast. #pxe-service=x86PC, "Install windows from RIS server", 1 # Use bootserver at a known IP address. #pxe-service=x86PC, "Install windows from RIS server", 1, 1.2.3.4 # If you have multicast-FTP available, # information for that can be passed in a similar way using options 1 # to 5. See page 19 of # http://download.intel.com/design/archives/wfm/downloads/pxespec.pdf # Enable dnsmasq's built-in TFTP server #enable-tftp # Set the root directory for files available via FTP. #tftp-root=/var/ftpd # Make the TFTP server more secure: with this set, only files owned by # the user dnsmasq is running as will be send over the net. #tftp-secure # This option stops dnsmasq from negotiating a larger blocksize for TFTP # transfers. It will slow things down, but may rescue some broken TFTP # clients. #tftp-no-blocksize # Set the boot file name only when the "red" tag is set. #dhcp-boot=net:red,pxelinux.red-net # An example of dhcp-boot with an external TFTP server: the name and IP # address of the server are given after the filename. # Can fail with old PXE ROMS. Overridden by --pxe-service. #dhcp-boot=/var/ftpd/pxelinux.0,boothost,192.168.0.3 # If there are multiple external tftp servers having a same name # (using /etc/hosts) then that name can be specified as the # tftp_servername (the third option to dhcp-boot) and in that # case dnsmasq resolves this name and returns the resultant IP # addresses in round robin fasion. This facility can be used to # load balance the tftp load among a set of servers. #dhcp-boot=/var/ftpd/pxelinux.0,boothost,tftp_server_name # Set the limit on DHCP leases, the default is 150 #dhcp-lease-max=150 # The DHCP server needs somewhere on disk to keep its lease database. # This defaults to a sane location, but if you want to change it, use # the line below. #dhcp-leasefile=/var/lib/misc/dnsmasq.leases # Set the DHCP server to authoritative mode. In this mode it will barge in # and take over the lease for any client which broadcasts on the network, # whether it has a record of the lease or not. This avoids long timeouts # when a machine wakes up on a new network. DO NOT enable this if there's # the slightest chance that you might end up accidentally configuring a DHCP # server for your campus/company accidentally. The ISC server uses # the same option, and this URL provides more information: # http://www.isc.org/files/auth.html dhcp-authoritative # Run an executable when a DHCP lease is created or destroyed. # The arguments sent to the script are "add" or "del", # then the MAC address, the IP address and finally the hostname # if there is one. #dhcp-script=/bin/echo # Set the cachesize here. #cache-size=150 # If you want to disable negative caching, uncomment this. #no-negcache # Normally responses which come form /etc/hosts and the DHCP lease # file have Time-To-Live set as zero, which conventionally means # do not cache further. If you are happy to trade lower load on the # server for potentially stale date, you can set a time-to-live (in # seconds) here. #local-ttl= # If you want dnsmasq to detect attempts by Verisign to send queries # to unregistered .com and .net hosts to its sitefinder service and # have dnsmasq instead return the correct NXDOMAIN response, uncomment # this line. You can add similar lines to do the same for other # registries which have implemented wildcard A records. #bogus-nxdomain=64.94.110.11 # If you want to fix up DNS results from upstream servers, use the # alias option. This only works for IPv4. # This alias makes a result of 1.2.3.4 appear as 5.6.7.8 #alias=1.2.3.4,5.6.7.8 # and this maps 1.2.3.x to 5.6.7.x #alias=1.2.3.0,5.6.7.0,255.255.255.0 # and this maps 192.168.0.10->192.168.0.40 to 10.0.0.10->10.0.0.40 #alias=192.168.0.10-192.168.0.40,10.0.0.0,255.255.255.0 # Change these lines if you want dnsmasq to serve MX records. # Return an MX record named "maildomain.com" with target # servermachine.com and preference 50 #mx-host=maildomain.com,servermachine.com,50 # Set the default target for MX records created using the localmx option. #mx-target=servermachine.com # Return an MX record pointing to the mx-target for all local # machines. #localmx # Return an MX record pointing to itself for all local machines. #selfmx # Change the following lines if you want dnsmasq to serve SRV # records. These are useful if you want to serve ldap requests for # Active Directory and other windows-originated DNS requests. # See RFC 2782. # You may add multiple srv-host lines. # The fields are ,,,, # If the domain part if missing from the name (so that is just has the # service and protocol sections) then the domain given by the domain= # config option is used. (Note that expand-hosts does not need to be # set for this to work.) # A SRV record sending LDAP for the example.com domain to # ldapserver.example.com port 389 #srv-host=_ldap._tcp.example.com,ldapserver.example.com,389 # A SRV record sending LDAP for the example.com domain to # ldapserver.example.com port 389 (using domain=) #domain=example.com #srv-host=_ldap._tcp,ldapserver.example.com,389 # Two SRV records for LDAP, each with different priorities #srv-host=_ldap._tcp.example.com,ldapserver.example.com,389,1 #srv-host=_ldap._tcp.example.com,ldapserver.example.com,389,2 # A SRV record indicating that there is no LDAP server for the domain # example.com #srv-host=_ldap._tcp.example.com # The following line shows how to make dnsmasq serve an arbitrary PTR # record. This is useful for DNS-SD. (Note that the # domain-name expansion done for SRV records _does_not # occur for PTR records.) #ptr-record=_http._tcp.dns-sd-services,"New Employee Page._http._tcp.dns-sd-services" # Change the following lines to enable dnsmasq to serve TXT records. # These are used for things like SPF and zeroconf. (Note that the # domain-name expansion done for SRV records _does_not # occur for TXT records.) #Example SPF. #txt-record=example.com,"v=spf1 a -all" #Example zeroconf #txt-record=_http._tcp.example.com,name=value,paper=A4 # Provide an alias for a "local" DNS name. Note that this _only_ works # for targets which are names from DHCP or /etc/hosts. Give host # "bert" another name, bertrand #cname=bertand,bert # For debugging purposes, log each DNS query as it passes through # dnsmasq. #log-queries # Log lots of extra information about DHCP transactions. #log-dhcp ''; systemd.services.dnsmasq = { bindsTo = [ "network-addresses-${routerCfg.internalBridgeInterfaceName}.service" ]; }; }; }